
Bitwise Operators and Bitboards
Maxim Rebguns

November 2023

This handout is for my LASA Computer Science Club captain presen-
tation. It provides an overview of the importance of bitwise operators,
and uses of the bitboard data structure. It serves as a reference and
high-resolution accompaniment to my presentation.

Binary data

When representing data on computers, a computer architect has to
work with restrictions imposed by electricity. These include current,
voltage, speed, size, and other factors that could influence the ca-
pabilities of the device being made. In terms of representing data,
electronics are generally classified into two types: analog and digital.

Figure 1: In analog electronics, we
represent data continuously.

In analog electronics, data is represented within a continuous range
of values. We might use current, voltage, frequency, or another
property of electricity to represent a signal. For example, if we have
a signal with a maximum voltage of 5 volts, we might represent any
number from 1 to 10 as a fraction of those 5 volts. Thus, we could
represent 0 with 0 volts, 5 with 2.5 volts, and 10 with 5 volts. The
main drawback of analog electronics is that the signal is prone to
fluctuations in real life, and slight changes in current or voltage
would cause errors in the represented data.

Figure 2: In digital electronics, we
represent data discretely.

In digital electronics, data is represented with two values: on or off.
The maximum voltage1 represents the “on” state, while the minimum 1 Voltage is a common property of

electricity to use for representing data.
However, we could also use others like
current and frequency. We don’t even
need to use electricity, although we’re
focused on electronics.

voltage represents the “off” state. We can also denote these states
also as 0/1 and true/false. This type of data is known as binary data,
since we are using only two values. The benefit of this form of data is
that slight fluctuations in voltage will be a lot less likely to result in
errors in the data, since there are only two states.

Binary numbers On Off
True False

1 0

Table 1: Binary statesRepresenting data in binary requires us to devise a system that only
uses two states: on or off. A common way to represent integers
in binary is what’s known as positional or place-value notation. This
notation parallels the notation we use every day—base-10 place-value
notation.

To represent base-10 numbers, we use ten different symbols: 0, 1,
2, 3, 4, 5, 6, 7, 8, and 9. To represent numbers greater than 9, we now
need a tens place, where the digit represents the number of tens in
the number. However, we can only count up to 99. From there, we

bitwise operators and bitboards 2

add another place—the hundreds place, and so on. Notice how each
place represents a magnitude of 10.

The same can be done with only two digits. We start out, as before,
with the ones place. We can count 0, 1, but we’ve already run out of
digits. Thus, to represent 2, we need a twos place. Then, we will need
a fours place, an eights place, and so on. Notice how each place now
represents a power of 2, rather than 10.

0 0 1 3
103 102 101 100

thousands hundreds tens ones
1 1 0 1
23 22 21 20

eights fours twos ones
Table 2: Place value representation of 13

in decimal (13) and binary (1101).Other ways to represent data in binary

On a low level, computers don’t really care what the zeroes and ones
in memory represent. It is up to humans to devise encodings to rep-
resent data such as integers and strings using only those two values.
We already saw one way to do this—using place-value representation.
However, there are also other ways, suited to different types of data.
Since each method has its own uses and implementations, I will list
various ways to represent data on a computer. You may or may not
have heard of one or more of these, but I will not delve into them
here. Wikipedia is an excellent source of

background information on various
data representation formats.

To represent integers, we might use place-value or two’s comple-
ment [6, 4]. To store real numbers, computer scientists have devised
floating-point, logarithmic, and fixed-point arithmetic. For characters,
we could use something like ASCII or UTF-8. These are just some of
the many types of data we need to represent on a computer. How
would we represent classes, objects, pointers, arrays, or other data
structures? Examining this question is essential when creating a new
data format or programming language.

Bitwise operators

While we think of operations such as addition and subtraction as
being fundamental in computer programming, there are more fun-
damental operators we use to manipulate bits on a lower level. A
bit, or binary digit, is the fundamental unit of data on a computer,
and has two states: 0 or 1. We use bitwise operators to manipulate
individual bits. Bitwise operations are usually the fastest operations a
computer can perform, and are sometimes even faster than addition,
subtraction, multiplication, and division.

Manipulating bits is important in many different applications [1].
Since bits represent true or false data, we can use binary numbers to
store multiple booleans. Computer programs often use a single inte-
ger to store multiple true/false values as flags.2 In embedded systems, 2 For example, the 8-bit integer

10110100 may represent 8 different
true/false values. This is useful because
we can pass a single integer into a
function, while representing 8 boolean
options at once.

or small computers used everywhere from smart fridges to aircraft,
we often have to manipulate individual bits to update certain regis-

bitwise operators and bitboards 3

ters and perform operations efficiently. On top of that, cryptography,
compression, and computer graphics all rely on bitwise operations in
their algorithms. Finally, bitwise operations are lightning fast and can
be used in data structures such as bitboards, which we will explore
next.

Bitwise NOT

Figure 3: NOT operation (logical
negation)

The simplest operation we can do on a set of bits is to simply reverse
all the bits (turn 0 into 1 and 1 into 0). This is known as bitwise NOT
[2, 3]. For example, the bits 011010100 would become 100101011. In
most programming languages, bitwise not is denoted with a tilde (~).

We can use a truth table to show how input bits correspond to
output bits after the NOT operation has been applied. In this case,
the truth table is very simple: 0 becomes 1 and 1 becomes 0.

A NOT A
0 1

1 0

Table 3: Truth table for NOT.

Bitwise AND, OR, and XOR

Next, we will explore bitwise operations that require two inputs. If
you have done programming before, you will notice that bitwise
operators do the same thing as logical operators (which you use in
things like if-statements), except they work on individual bits.

Figure 4: AND operation (logical
intersection)

When we apply bitwise AND on two series of bits, the resulting
series of bits will only have 1 bits where both inputs have a 1 bit
in that location [2, 3]. For example, 011010100 & 101001101 =

001000100. The symbol for bitwise AND is typically an ampersand
(&).

Figure 5: OR operation (logical union)

Bitwise OR is another operator that takes two inputs. The resulting
series of bits will have 1 bits where either input or both have a 1 bit
at that location [2, 3]. Thus, 011010100 | 101001101 = 111011101.
Bitwise OR is typically represented with a pipe (|).

Figure 6: XOR operation (logical
symmetric difference)

The final common two-input bitwise operator is bitwise exclusive
or (XOR). This operator is exactly like bitwise OR, except it requires
only one input bit to be 1 for the output to be 1 [2, 3]. If both input
bits at a certain position are 1, then the output is 0. For example,
011010100 ^ 101001101 = 110011001. Bitwise XOR usually repre-
sented by a caret (^).

Bitwise left/right shift

bitwise operators and bitboards 4

A B A AND B A OR B A XOR B
0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Table 4: Truth table for AND, OR, and
XOR.

0010110 >> 10 = 0000101

Figure 7: Visual example of a right shift
by 2. Bold shows padding and italic
shows truncated digits.

In many cases, we might want to “move” bits to the left or to the
right. This is exactly what bit shift operators do. Both the left and
right shift operators take two inputs: the value to be shifted, and a
number of bits the value should be shifted by [2, 3].

The bitwise left shift moves all bits in a variable to the left, truncat-
ing the leftmost bits and padding the right side with zeroes. Thus,
0010110 >> 10 = 0000101. The bitwise right shift does the same thing, Note that in the example, we are

shifting to the right by 2, since 10 is 2

in binary. For the sake of consistency,
I used binary for the shift value as
well, but this isn’t as common in
programming, where we can explicitly
denote the base of a number.

but in the opposite direction. Rightmost bits are truncated, while the
right side is padded with zeroes. Thus, 0010110 << 10 = 1011000.

Bitboards

Now that you understand the utility of bitwise operators and how
they work, let’s look at an application of them in game development.
When coding games such as chess and tic-tac-toe, it is necessary to
represent the game board.

o x x

x

o o
Table 5: The tic-tac-toe board.We might represent the board as an array. For the given board

(Table 5), we can represent it with the following array: For code examples, I am using C, since
it is a language commonly used for
low-level programming.typedef enum { MOVE_EMPTY, MOVE_X, MOVE_O } move;

move board[][] = {

{MOVE_O, MOVE_X, MOVE_X},

{MOVE_EMPTY, MOVE_X, MOVE_EMPTY},

{MOVE_O, MOVE_O, MOVE_EMPTY}

};

We define three possible states, and then fill them into a two-
dimensional array. We could also do the same thing with a one-
dimensional array. Either way, using an array to represent a game
board like this is a bad idea.

First of all, for just three states (empty, x, and o), we are using an
integer, which can take up over a million different values. This is a
clear waste of memory. On top of that, we would have to navigate the
board through iteration. Loops add time complexity and can become
unwieldy, especially if we are looking for things like diagonal wins.
Additionally, for more complex games like chess, performing move
operations on a board array would require a lot of changing of array
values, which is not the fastest operation on a computer.

bitwise operators and bitboards 5

We can do the same exact board using just two integers known
as bitboards. A bitboard is an integer representation of a game board,
where each bit represents the existence of a piece at a certain position
[5]. Since bits can only be 1 or 0, we need two bitboards to represent
x and o positions separately.

typedef uint16_t board;

// 123456789

board x_positions = 0b011100000;

board o_positions = 0b100000110;

In this code, we define the type board to be a 16-bit integer. The
board itself is only 9 bits, but that is just over the size of an 8-bit inte-
ger. Thus, 7 bits are wasted, but this is a lot less than before.3 Instead 3 Chess is convenient in that the board

has 64 squares, which can be perfectly
represented in a 64-bit integer.

of thinking the board as an integer, we think of it as a structure of
bits that can be manipulated with bitwise operators. Note that what
square we think of as 1 (the most significant bit) and what square we
think of as 9 (the least significant bit) don’t really matter. In this case,
we made the top left square 1, and move in row major order down to
the bottom right square at 9.

1 2 3

4 5 6

7 8 9
Table 6: Our board numbering system.Representing the board in this way unlocks the speed and power

of bitwise operators. Becase a bitboard is represented as an integer,
you can use bitwise operators to create new bitboards, pass them
into functions, and make copies of them, worrying a lot less about
memory usage and speed.

Bitboard operations

Let’s say we now have two bitboards representing x and o positions
in tic-tac-toe. If we need a bitboard representing all taken positions,
all we have to do is apply a bitwise OR to them:

0 1 1 1 0 0 1 1 1

0 1 0 | 0 0 0 = 0 1 0

0 0 0 1 1 0 1 1 0
Table 7: ORing the x and o positions
gives a bitboard of all taken positions.board taken_positions = x_positions | o_positions;

We can now use this board of taken positions to determine, for
example, if a player’s move is valid. We can invert the taken positions
to get a bitboard of all positions that haven’t been taken (since every
1 becomes a 0, and 0 becomes a 1).

1 1 1 0 0 0

~ 0 1 0 = 1 0 1

1 1 0 0 0 1
Table 8: Inverting the taken positions
to get a bitboard of not taken (valid)
positions.

We can then AND this bitboard with the bitboard representing the
player’s move (it is full of zeroes except for a single 1 at the position
where the player wants to move). This resulting board will have a 1

somewhere if the player’s move overlaps with a valid position.

0 0 0 0 0 0 0 0 0

0 0 0 & 1 0 1 = 0 0 0

0 0 1 0 0 1 0 0 1
Table 9: The player tries to move to the
bottom-right corner, which is a valid
move. Therefore, the resulting bitboard
is non-zero.

However, if the player’s move doesn’t overlap with a valid po-
sition, then we get an empty bitboard. Since an empty bitboard
represents the integer value 0, we know that the move is invalid only
if the resulting bitboard is equal to 0, meaning that they player’s
move did not overlap any of the allowed positions.

1 0 0 0 0 0 0 0 0

0 0 0 & 1 0 1 = 0 0 0

0 0 0 0 0 1 0 0 0
Table 10: The player tries to move to the
top-left corner, which is already taken.
Therefore, the resulting bitboard is 0.

bitwise operators and bitboards 6

// Generating a bitboard of valid positions.

board valid_positions = ~taken_positions;

// Using that bitboard to validate the player’s move.

bool is_valid = (move & valid_positions) != 0;

We could also do things like checking if somebody has won. In-
stead of using loops, we can simply encode the eight possible win
conditions in tic-tac-toe as eight different bitboards, and then AND
them with the player’s board to see if the result matches the win
condition:

bool has_won = ((board & l_vert_win) == l_vert_win)

|| (board & m_vert_win) == m_vert_win)

|| ...);

Of course, the possibilities are endless. For a complex game like
chess, we may want to use clever bitwise tactics, such as shifts to ap-
ply different moves. It may seem counter-intuitive, but it is extremely
speed-efficient. Speed is a necessary trait for things like chess AIs,
which need to cycle through hundreds of possible states to choose
the most optimal one. See the Chess Programming Wiki

(https://www.chessprogramming.org)
for a whole bunch of bitboard tips and
tricks, as well as other clever ways to
represent game boards and implement
a chess program.

Conclusion

Modern digital computing revolves around the notion of two states:
0 and 1, which can be encoded in electricity to represent data. There
are many ways to represent different types of data in binary, includ-
ing bitboards. The good thing about bitboards is that they’re a great
way to represent game boards in chess, checkers, and tic-tac-toe. We
can use bitwise operators to manipulate individual bits, which is
broadly applicable to many computer science fields. In the case of
bitboards, bitwise operators allow us to manipulate bits quickly and
efficiently.

References

[1] Real world use cases of bitwise operators.

[2] Wikipedia Contributors. Bitwise operation, November 2023.

[3] Wikipedia Contributors. Bitwise operations in C, November 2023.

[4] Wikipedia Contributors. Floating-point arithmetic, November
2023.

[5] Gerd Isenberg and Chess Programming Wiki Contributors. Bit-
boards, March 2022.

[6] John Zahorjan. Binary Representation, 2022.

