
Bitwise Operators and Bitboards
A brief introduction

Maxim Rebguns

November 2023

About Me

Maxim Rebguns

▶ Computer scientist
▶ Favorite languages: C and Python
▶ Worked with different algorithms, embedded systems, web

development, game development
▶ Avid Linux user
▶ Theater kid

Binary data

Binary as a number system

▶ Just like with decimal numbers, but instead of 0–9, we only
have 0 and 1.

▶ We use place values, just like with base-10 (decimal) numbers.

Representing data in binary

▶ Integers: place value, two’s complement
▶ Real numbers: floating-point, fixed-point, logarithmic
▶ Characters: ASCII, UTF-8
▶ Pointers? Arrays? Structures? Classes?

Getting rid of the abstraction

Figure 1: Average programmer

▶ It’s all just bits under the hood

Bitwise operators

Purpose

Why would we need to manipulate individual bits?

▶ Representing true or false data

▶ Embedded systems
▶ Cryptography
▶ Compression
▶ Graphics
▶ Speed
▶ Certain data structures

Purpose

Why would we need to manipulate individual bits?

▶ Representing true or false data
▶ Embedded systems

▶ Cryptography
▶ Compression
▶ Graphics
▶ Speed
▶ Certain data structures

Purpose

Why would we need to manipulate individual bits?

▶ Representing true or false data
▶ Embedded systems
▶ Cryptography

▶ Compression
▶ Graphics
▶ Speed
▶ Certain data structures

Purpose

Why would we need to manipulate individual bits?

▶ Representing true or false data
▶ Embedded systems
▶ Cryptography
▶ Compression

▶ Graphics
▶ Speed
▶ Certain data structures

Purpose

Why would we need to manipulate individual bits?

▶ Representing true or false data
▶ Embedded systems
▶ Cryptography
▶ Compression
▶ Graphics

▶ Speed
▶ Certain data structures

Purpose

Why would we need to manipulate individual bits?

▶ Representing true or false data
▶ Embedded systems
▶ Cryptography
▶ Compression
▶ Graphics
▶ Speed

▶ Certain data structures

Purpose

Why would we need to manipulate individual bits?

▶ Representing true or false data
▶ Embedded systems
▶ Cryptography
▶ Compression
▶ Graphics
▶ Speed
▶ Certain data structures

Bitwise AND (binary)

A B ?

0 0 0
0 1 0
1 0 0
1 1 1

Performs an AND operation on each bit:

011010100
& 101001101

001000100

Figure 2: We are intersecting our two inputs

Bitwise OR (binary)

A B ?

0 0 0
0 1 1
1 0 1
1 1 1

Performs an OR operation on each bit:

011010100
| 101001101

111011101

Figure 3: We are unioning our two inputs

Bitwise XOR (binary)

A B ?

0 0 0
0 1 1
1 0 1
1 1 0

Performs an XOR operation on each bit:

011010100
^ 101001101

110011001

Figure 4: We are taking the symmetric difference of our two inputs

Bitwise NOT (unary)

A ?

0 1
1 0

Performs a NOT operation on each bit:

~ 011010100

100101011

Figure 5: We are negating our one input

Left/Right Shift (binary)

Allows you to shift all bits of a number to the left or right by
another number.

0010110 >> 10 becomes 0000101
0010110 << 10 becomes 1011000

▶ Note that 10 in binary means 2 in decimal.
▶ Typically we represent the shift amount in decimal for easier

understanding.

Figure 6: Left shift. A right shift is the same but in the other direction

Bitboards

Intro to bitboards

Let’s look at an application of bitwise operators that is often used
for representing grids in games: bitboards

▶ A way to represent a grid of binary numbers in a single integer.
▶ Highly compact.
▶ Allows for boolean operations using bitwise operators.
▶ Very useful for gridded board games.

The intuitive method

Goal: Create a grid representing the tic-tac-toe board.

o x x
x

o o

typedef enum { MOVE_EMPTY, MOVE_X, MOVE_O } move;
move board[][] = {

{MOVE_O, MOVE_X, MOVE_X},
{MOVE_EMPTY, MOVE_X, MOVE_EMPTY},
{MOVE_O, MOVE_O, MOVE_EMPTY}

};

Issues with this method

▶ Each spot is an integer, which takes at least 16 × 9 bits!

▶ We could use a 255 bit char, but 252 of those bits would still
be wasted.

▶ Searching for things in the array would be done by expensive
loops.

▶ Representing possible wins is painful.
▶ What if we were doing chess? How would we simulate the

range of moves of pieces without contrived loops?

Issues with this method

▶ Each spot is an integer, which takes at least 16 × 9 bits!
▶ We could use a 255 bit char, but 252 of those bits would still

be wasted.

▶ Searching for things in the array would be done by expensive
loops.

▶ Representing possible wins is painful.
▶ What if we were doing chess? How would we simulate the

range of moves of pieces without contrived loops?

Issues with this method

▶ Each spot is an integer, which takes at least 16 × 9 bits!
▶ We could use a 255 bit char, but 252 of those bits would still

be wasted.
▶ Searching for things in the array would be done by expensive

loops.

▶ Representing possible wins is painful.
▶ What if we were doing chess? How would we simulate the

range of moves of pieces without contrived loops?

Issues with this method

▶ Each spot is an integer, which takes at least 16 × 9 bits!
▶ We could use a 255 bit char, but 252 of those bits would still

be wasted.
▶ Searching for things in the array would be done by expensive

loops.
▶ Representing possible wins is painful.

▶ What if we were doing chess? How would we simulate the
range of moves of pieces without contrived loops?

Issues with this method

▶ Each spot is an integer, which takes at least 16 × 9 bits!
▶ We could use a 255 bit char, but 252 of those bits would still

be wasted.
▶ Searching for things in the array would be done by expensive

loops.
▶ Representing possible wins is painful.
▶ What if we were doing chess? How would we simulate the

range of moves of pieces without contrived loops?

Enter bitboards

What if we represented the board as two binary numbers, one for
each side?

1 o 2 x 3 x
4 x 5 6
7 o 8 o 9

typedef uint16_t board;

// 123456789
board x_positions = 0b011100000;
board o_positions = 0b100000110;

Things you can do with bitboards

▶ Get an intuitive understanding:
https://tearth.dev/bitboard-viewer/

▶ Get a bitboard representing all taken positions:

board taken_positions = x_positions | o_positions;

▶ Check if a player’s move is valid:

board valid_positions = ~taken_positions;
bool is_valid = (move & valid_positions) != 0;

https://tearth.dev/bitboard-viewer/

More bitboard tricks

▶ There are 8 ways to win in tic-tac-toe. You can represent these
8 board positions as bitboards, and then AND them with the
player’s positions to see if they won:

bool has_won = ((board & l_vert_win) == l_vert_win)
|| (board & m_vert_win) == m_vert_win)
|| ...);

▶ Bitwise operators allow you to manipulate bits efficiently, which
is what makes this a great methods for complex games like
chess.

Conclusion

▶ There are a truckload of ways to represent data with binary.
▶ Bitboards are one of them.
▶ Bitwise operators allow for the manipulation of individual bits

of data.
▶ This is extremely fast and broadly applicable.

Thanks!

Credits

▶ Binary Representation [pdf]
▶ Wikipedia: Floating-pint arithmetic
▶ StackOverflow: Real world use cases of bitwise operators
▶ Wikipedia: Bitwise operation
▶ Wikipedia: Bitwise operators in C
▶ Chess Programming Wiki: Bitboards

https://courses.cs.washington.edu/courses/cse410/22wi/lectures/03-binaryRepresentation.pdf
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://stackoverflow.com/questions/2096916/
https://en.wikipedia.org/wiki/Bitwise_operation%3E
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://www.chessprogramming.org/Bitboards

About

This work accessible here by Maxim Rebguns is licensed under CC
BY 4.0

https://mrmaxguns.github.io/documents/
https://mrmaxguns.github.io
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	About Me
	Binary data
	Bitwise operators
	Bitboards
	Thanks!

